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The diagrammatic perturbation technique for the kinetic theory of classical 
reacting systems with diffusion is developed. It is further applied to investigation 
of recombination-type reactions in media of one, two, and three dimensions. The 
effective rates of this reaction are calculated, covering the whole range from the 
slow to the fast (diffusion-controlled) regimes. 
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1. I N T R O D U C T I O N  

There are striking similarities in cooperative behavior of  physical, chemical, 
and biological systems far from thermal equilibrium. Investigations of  
general models of  such behavior are the subject of  synergeties, the new field 
of  interdisciplinary research. ~1) Particularity, there is a wide class of  abstract 
models related to the problem of random diffusional wandering of  classical 
particles with irreversible reactions between them, treated as a Markovian 
discrete random process. The examples are numerous and include 
exciton-exciton or defect-defect annihilation in solids, chemical reactions in 
dilute solutions, predator-prey interactions in natural ecosystems, etc. The 
problem was first adressed in 1917 by M. Smoluchowski ~2) in his studies of  
coagulation phenomena. Recently, considerable progress was made when M. 
Doi ~3) and Ya. B. Zeldovich and A. A. Ovchinnikov ~4) had proposed a 
"quantum field" reformulation of  this purely classical problem. 

The "quantum field" representation of a master equation for such 
discrete Markovian processes opens new ways of application of the advanced 
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methods of quantum field theory that have turned out to be extremely fruitful 
in problems of phase transitions or solid state theory. For instance, it gives 
the possibility to constr~ct the formal solution of a master equation in terms 
of path integrals and discuss its properties in the WKB approximation (see 
Ref. 5). Such formal solution can be used further to construct the diagram- 
matic perturbation technique (6) that largely resembles the Belyaev 
diagramms (7) for quantum nonideal Bose gases with condensate. 

The aim of the present paper is twofold. First, we further develop the 
diagrammatic technique, proposed in Ref. 6, and describe another way of 
construction of infinite diagrammatic expansions. Second, we consider the 
particular problem of two-particle annihilation reactions and calculate the 
effective rate of such reaction in media of one, two, and three dimensions. 

2. FORMULATION OF THE PROBLEM 

We assume that some classical particles X perform random wandering 
with the diffusion constant D in a continuous medium of d dimensions. 
When two particles X come sufficiently close one to another they can react 
(annihilate or recombinate) and form the new particle R that does not 
participate further in the reaction. The inverse reaction of decay of R into 
two particles X is assumed to be forbidden. The probability per unit time of 
an elementary act of reaction X + X ~  R between two particles X separated 
by a distance r is given by the function W(r). This function is sometimes 
approximated as W(r)= woO(r o -r) ,  i.e., W(r) is constant and equal to w0 
when r is smaller than the "radius of reaction" r 0, and vanishes for r > r 0. 

With respect to this situation two questions are significant. First, what 
would be the effective rate of extinction of particles X in the long time limit 
when their loss due to reaction is not compensated? Second, what steady 
population density of particles X would be established in presence of some 
mechanism of uniform generation of these particles X? 

Two qualitatively different regimes can be distinguished depending on 
the value of the parameter ,~z = wor~/D" When ~ ~ 1 the reaction is called 
slow. Since rcoll = r~/D gives the duration of an elementary diffusional 
collision of two particles, this condition can be written as w0rcoN ~ I. We see 
that in this regime only the tiny fraction of all collisions result in reactions 
between the colliding particles. Hence, diffusion is "more effective" than the 
reaction: it permanently restores the homogeneous Poissonian distribution of 
particles X. 

When )~z ~> 1, i.e., w0r~on ~> 1, the reaction is calledfast. In such regime 
almost every collision between particles leads to recombination and diffusion 
is not able to wash off correlations resulting from the reaction. For small 
population densities, when the average distance between the particles largely 
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exceeds the reaction radius r0, the effective rate of reaction is limited by 
diffusion. In order to react any two particles X should come sufficiently close 
one to another in the process of diffusional wandering. It is said that in this 
case the reaction is diffusion-controlled.  

The first theory of diffusion-controlled reactions was given by M. 
Smoluchowski ~2) in connection with his studies of coagulation of colloidal 
particles in a solution. The effective rate of coagulation had been calculated 
in Ref. 20 by imposing the absorbing boundary condition for diffusing 
particles on the surface of the sphere with the radius r 0 for the one-particle 
Fokker-Planck equation. Later this approach was applied to studies of 
diffusion-controlled recombination in presence of potential interactions 
between particles ~s) and other problems. Although the method remains 
popular, it possesses some essential deficiencies. The most important among 
them is that such theory cannot take into account cooperative effects. Disap- 
pearance of two given particles X should influence the probability of reaction 
for the neighboring particles X, but this is not reflected in such approach. 
Most clearly this deficiency is revealed in one or two dimensions where an 
attempt to apply the Smoluchowski theory in the situation with the uniform 
generation of particles leads to unsatisfactory results (see Ref. 9). 

The more consistent way of construction the theory is to start from the 
hierarchy of equations for the m-particle distribution functions and truncate 
the chain of equations by some approximate procedures. This way was first 
followed in Ref. I0 and later developed in Refs. 9 and 11 where the 
Kirkwood truncation scheme was applied. In these papers the reaction was 
again taken into account by imposition of absorbing or partially absorbing 
boundary conditions. It was still unclear what are the conditions of 
applicability of such truncation scheme and to what extent partially 
absorbing boundary conditions can describe regimes with 2 2 =  WoVco H ~ 1, 
that are intermediate between fast and slow reactions. 

Complete theoretical description of the system of classical reacting 
particles is provided by the master equation for the set of the probability 
functions {PN}, which elements 2 PN=PN(r l , . . . , rN;  t) give the probability to 
find at the moment t in the medium N particles X located at points r I . . . .  , r N. 
Since all reacting particles are identical, functions PN are symmetrical under 
permutations. The master equation mixes the functions PN corresponding to 
different total numbers N of particles X because the number of particles is 
not conserved in the process of the reaction. 

It was noted in Refs. 3 and 4 that there exists a profound analogy 
between this master equation, describing the classical probability problem, 

2 They  should  no t  be c o n f u s e d  wi th  the m-pa r t i c l e  d i s t r ibu t ion  func t ions  t ha t  were  d i scussed  
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and the Schr6dinger equation for quantum systems of identical Bose particles 
with reactions that do not conserve the number of these particles. Indeed, in 
the latter case the system is described by a set of wave functions {giN} 
symmetrical under permutations, and the Schr6dinger equation mixes the 
components iv N with different numbers N. It is well known that the best way 
to deal with a quantum many-body problem is to use the second quantized 
representation, introducing the creation and annihilation Bose operators. 
Why could we not apply the same procedure to a classical master equation? 

The formal "second quantization" of the master equation has been 
realized by M. Doi (3) and independently by Ya. B. Zeldovich and A. A. 
Ovchinnikov. (4) In the new representation this equation is written 

where /4 is the linear kinetic operator, expressed in terms of creation and 
+ and a k. For the recombination reaction X + X - ,  R annihilation operators ak 

it has the form (3) 

H = -- E Dk2a~ak + 1/VS~_ W(k) aka k 
k k 

(2) 
1/V ~ + + VS(a;  - 1) 

- W(k) ak,+kak2_kaklak2 + 
k ,k l ,k2  

Here D is the diffusion constant, W(k) is the Fourier transform of the 
function W(r), V is the volume of the medium. The uniform generation of 
particles X at the rate S particles per unit time per unit volume is assumed; 

+ and a k are the usual Bose operators with the commutation rule a k 

[a k, a~-,] = A(k - k'). 
The "state vector" ]~) is constructed in the following way. Let us first 

assume that the medium is divided into a system of cells and every cell can 
be characterized by indication of its center point r,~. Then we can define the 
distribution function P({n(rm) }, t) that gives the joint probability to find 
n(rm) particles within a cell located at a point r m. The state vector [~) is 
defined as 

I ~ )=  ~. P({n(rm)},t)] ~(~'+(rm)) n(rm)[0) (3) 
In(rm)l  m 

where summation over all possible occupation numbers {n(rm) } of the cells is 
performed; ~/+ (rm) is the creation operator, 

[tff(r.O, V/+ (rm,)] =Arnrn, (4) 

The vacuum vector [0) satisfies the equation ~( rm)I0)=  0 for every m. 
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After the definition of the state vector the size of the cells can be taken 
arbitrarily small, thus realizing the transition to the continuous medium. 

In the "second quantized" form the master equation (1) looks like the 
Schrfdinger equation with imaginary time and the non-Hermitian 
Hamiltonian. There is, however, an additional difference in the procedure for 
finding the average values. 

The normalization relation for the distribution P({n(rm) }, t) is 

N~ P({n(rm)}, t) = 1 (5) 
{n(rm)} 

In terms of the state vector it can be written as 

($J O) = 1 (6) 

where I~) is the fixed normalization vector, defined by the relations 

a k [r =A(k)I~)  (7) 

Every observable property A is associated with a certain Hermitian operator 
and the average value of A is found as 

Y= ($1A (8) 

For example, the total number of particles in the medium corresponds 
to an operator 

= Z a[ak (9) 
k 

The average total number of particles is [cf. (7)] 

N =  (~l a0 [•) - (a0) (10) 

3. THE DIAGRAMMATIC PERTURBATION TECHNIQUE 

The "second quantized" representation of the master equation can be 
used to develop the diagrammatic perturbation methods, analogous to that of 
the quantum field theory. (6) 

According to (1), (_2), and (10), the temporal evolution of the average 
population density r7 = N/V is determined by the equation 

t~= 1/V(aoH ) (11) 

o r  

= - ( 2 / V  z) ~ W(k) (aka k) + S (12) 
k 
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Next we introduce the interaction representation. The kinetic operator H can 
= --Y~k Dk  a k a k describes free diffusion be split as H = H 0 + Hint, where H 0 2 + 

and nin t includes all the terms related to reactions. In the new representation 
we have 

dk(t ) = en~ e-n~ (13) 

~3 
c3~-[~(t)) =-/~int(t) [~(t)) (14) 

where/~int(t) = exp(H o t) Hin t exp(--H 0 t). 
Equation (14) can be formally solved as 

I ~(t) ) = U(t, to)Iff(t0)) (15) 

with the evolution operator 

U(t, to) = 2? exp [ ~to l~int(t' ) dt' } (16) 

where 2? is the symbol of chronological ordering. 
We assume that in the limit t o ~ - ~  the reaction and generation of 

particles are adiabatically eliminated so that the initial state I f f ( - ~ ) )  
corresponds to N O particles independently distributed in the volume V. When 
the reaction and generation are then slowly switched on, in the limit t--, 
the steady state I~(+c~)) would be reached that would be characterized by a 
certain average total number .N of reacting particles, _N = riV. Note that the 
procedure of slow switching on of the reaction and generation can always be 
carried out in such a way that the average total number of particles would 
remain constant. Particularily we are justified to assume that the initial 
number of particles N o was the same as the average number of particles .N in 
the final steady state for which r~= 0 in Eq. (12). 

By using the interaction representation we can write 

(~1 aka-k  [0) = (~] dk(t) d-k(t)  U(t, --Go ) If f(--~ )) 
(17) 

=- (dk(t) d_k(t) U(t, - ~ ) ) o  

By expanding U ( t , - o r )  into the infinite series the problem of calculation of 
this expression is reduced to summation of the terms that are the averaged 
multitime products of the operators d~(t) and dk(t ) over the initial state 
I~(--oo)) where the correlations between particles are absent. 

Note that the operators d +(t) and do(t ) in the interaction representation 
coinside with the operators a + and a0 [cf. (13)] and do not depend on time. 
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Moreover, in the large volume limit, 
g =  N / V =  const, we have, for instance, 

and 

when _N~ oo and V-+ oo but 

( ~ l a o a o + l f f ( - m ) ) = ( r  l (18) 

(#1 a0 I # ( - o o ) )  = (01a  = 1 (19) 

Hence, in this limit the operators a0 ~ and a o can be treated as e-numbers, by 
substituting ao-~ f f=~7/V and a + ~ 1. Such substitution means that we 
neglect the fluctuations of the total number of molecules X in the volume V. 
This procedure resembles separation of the condensate part in the quantum 
theory of nonideal Bose gases (see Ref. 12). 

It can be easily seen that the multitime averages of the operators d+(t) 
and dk(t ) with k:/:O, taken over the uncorrelated initial state IO(-m)) ,  
factorize into the sum of all possible products of pair correlators, given by 
the relations 

(ak(t) ak,(t'))0 = o 

(7?ffk(t) "+ ' (20) ak,(t ))0 = A(k -- k ' )  G~ -- t') 

Here G 0 is the Green's function of free diffusional propagation 

G O = exp(-Ok2r),  r > 0; G0(r ) = 0, r < 0 (21) 

By introducing the graphic notations, we are able then to represent 
(aka_k) as a sum of the infinite diagrammatic series 

W(k)(aka-k)  

(22) 

Here solid lines denote the functions G0(r ) , zigzag lines correspond to the 
"condensate" & and dots indicate the quantity W(k). 
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Since we are interested in investigation of the limit of small population 
densities tT, we can omit in (22) all contributions with three or more zigzag 
lines. The remaining diagramms are of the ladder type, 

W(k)(aka-k) = 

+ . . .  (23) 

and can be easily summed. 
In the medium of three dimensions this leads to a satisfactory result (see 

Ref. 6 and discussion below), but in one- or two-dimensional media there 
would be divergencies at k-~0.  More close analysis shows that such 
divergencies arise because the Laplace transform of the free propagation 
Green's function G~ = (z + Dk 2)- 1 has singularity at z --* 0, k --, 0. In an 
attempt to eliminate these divergencies we can replace all free propagation 
Green's functions in (22) by the real propagation Green's functions that are 
defined as 

Gk(r ) = (Tak(t + r) a[(t)) = {f'6k(t + r) d+(O U(oo, - o o ) )  0 (24) 

After summation of all weakly connected diagrams in the series for G k we 
come to the Dyson equation: 

= , + ~ ~ ,~ (25) 

or, in the explicite form, 

G k ( 2  ) = [z  ~- D k  2 - -  ,~k(2)] 1 (26) 

The quantity Zk(z ) is small since it is proportional to the average population 
density of particles rL Therefore the difference between Gk(z ) and G~ is 
significant only where G~ has a singularity, i.e., at z = 0 and k = O. Hence 
we can choose Gk(Z ) in the approximate form as 

6 k ( z )  _~ [z + O k  2 - 2:o(0)]-' (27) 
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In the diagrammatic series for X0(0 ) we again keep only the terms of the 
lowest (linear) order in g and obtain 

Iv ='+ "<> (28) 

This infinite diagrammatic series is easily summed. As a result we find that 

220(0 ) = --4ffF o (29) 

where F o is the value at k = 0 of the function F k that satisfies the integral 
equation 

r k = W(k)  1 t" dk' (30) 
(2~) d W ( k - k ' ) r k ,  Dk,2 + 12:o(0)1 

Y 

Taken together, Eqs. (29) and (30) determine the quantity Xo(0 ). 

4. THE EFFECTIVE RATE OF THE REACTION 

When the result of summation of the infinite series (23) with real 
propagation Green's functions is substituted into (12) we find 

= - K e f f n  2 + S = O  (31) 

where Kef f is the effective rate of this reaction and is given by the expression 

Kef f = 2F o (32) 

Hence, the problem of calculation of the effective rate of the reaction is 
reduced to solving Eqs. (29) and (30). 

Generally this is rather difficult task. However, the situation is 
simplified if we assume the particular form of the function W(r), i.e., 
W(r) = w o 0(% - r). 

After the inverse Fourier transform Eq. (30) can be written 

F(r) = W(r) -- D - I  W(r) Z(r)  (33) 

where a new function Z(r),  defined as 

Z ( r ) = f  dk Fk ik, 
(27C) a k2-~aioe (34) 
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satisfies the differential equation 

(d - o 2 ) Z(r)  = W ( r ) [ D - 1 Z ( r ) -  1] (35) 

We have introduced here the notation 62 = ]22o(0)1/D. 
First we consider the one-dimensional case where the solution to (35) is 

given by 
Z(x )  = A , cosh Ux + (Wo/t~ 2) (36) 

with p2 = 6~ + wo/D. Therefore the Fourier transform of F(x) [cf. (33)] is 

sin kr o 
F~ = 262ota-2Woro kr ~ woD-1A1 )to cosh/axe-ikx dx (37) 

f 

- r  o 

To find the unknown coefficient A 1 we substitute (37) into (34) and obtain 
an algebraic equation for A1. Its solution is 

it 2 Daor o 
A~ = ~Uro) 2 gr  o sinh ~r o + 6 or o cosh gr  o (38) 

where i t2=  Wor~/D. By using (29) it can be shown that (6oro)2 ~< 8froit  2. 
Hence, at small densities, such that (6oro) 2 ~ it 2, we have 

2w0 tanh it 60 r 0 
F~ -- it 60r 0 + it tanh it (39) 

The quantity a 0 is determined from Eq. (29) that can be written 

(60 ro) 2 = 4 f r ~ D -  1F o (40) 

Solution of (39) and (40) gives the expression for the effective rate 

Kerr = 4woro (it 2 tanh 2 it + 32fr0it tanh it) 1/2 - it tanh/1, 
(it 2 tanh 2 it + 32fr0it tanh it) 1/2 - + ~  

(41) 

At the values of the parameter it that correspond to the fast or intermediate 
reactions (2 >~ 1) 

K e f f  = 3 2 D r  (42) 

In this case the reaction is diffusion-controlled. In the opposite situation of 
slow reaction (2 ~ 1) the expression (42) still holds if f r  o ~ i r a4  1, while 
under the condition it2 ~ f r  o ~ 1 the classical result 

K e f  f = 4Wor 0 

of the "chemically controlled" effective rate is reproduced. 
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Consider next the two-dimensional system. Here the solution of Eq. (53) 
for r < r 0 should be sought in the form 

Z(r) = A zIo~r) + (wo/p z) (43) 

where Io(x ) is the modified first-order Bessel function. 
By following the same line of arguments as in the one-dimensional case, 

we find 

F k = (2zrw o r 2 a~//u 2) [J1 (kro)/kro ] - 2rc(woA 210) f[o rio ~r) Jo(kr) dr (44) 

Here Jo(X) and Jl(x) are the Bessel functions and 

w~176176 lar~176176 I (1 + (O'oro) 2 z1-2) 
A2 = fl2~2 Ooroll(uro ) 

go(ooro) 
X Io(~oro ) + I,(ooro)K,(ooro) 

ii~ro) Io~roX ) Io(aoroX)X dr, 

(45) 

Ko(x ) and Kl(X ) are the modified second-order Bessel functions. In the limit 
of small densities, such that aoro ~ 1 and #r o ~ 2, we have 

D 
A2 ~ - 2i,(2) i i n (aoro) [ (46) 

By substituting (46) into (44) and using (32) we find that in this limit in 
two-dimensional systems the effective rate of reaction is 

4~rD 
Kef f = (47) 

Iln(ooro)l 

where a 0 satisfies the transcendental equation 

8zvi 
~0 ~ = (48) 

I ln(oo ro)l 

Finally we turn to investigation of the reaction in three-dimensional media. 
Simple analysis of Eq. (30) reveals that in this case the long-wave 
divergencies are absent and the correction term 1220(0)I in the denominator of 

822/38/I-2-24 
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(30) can be neglected, which corresponds to putting a o = 0 in Eq. (35). Then 
the function Z(r)  can be sought in the form 

Z(r)  = A 3 sinh(2r/ro)/r + D (49) 

so that 

Fk = --4~r(wo/D)A3 rrjo 0 [sin(kro)/k] sinh[(wo/D) 1/2 rl dr (50) 

Substitution of (50) into (34) gives 

A 3 = -[Dro/~. cosh ~] (51) 

Hence, the effective rate of the reaction in three-dimensional systems is 

Ker r = 8~ Drol l  -- (tanh 2)/~] (52) 

Note that our derivation has not used any assumptions about the Value of ~. 
In the limit of fast reactions (~ >> 1) Eq. (52) reduces to the well-known 
result of Smoluchowski, 

Kef f = 87r Dr o (53) 

while for the slow reactions (;t ~ 1) we reproduce the classical result of 
chemical kinetics 

K~r r = (8~r/3) Wo r3 

which corresponds to the "chemically controlled" process of reaction. 

5. D I S C U S S I O N  

In accordance with Refs. 3 and 6 our results show that the 
Smoluchowski theory gives correst predictions for the three-dimensional 
media in the limit of extremely fast reactions. For intermediate reactions 
Eq. (52) for Kef f differs from the expression, obtained in Ref. 10 by 
application of the partially absorbing boundary condition. This difference 
has clear interpretation. According to the boundary condition used in Ref. 10 
a particle cannot penetrate into the reaction sphere (where l rl < r0)--it is 
either absorbed by this sphere or reflected. On the contrary, in the model 
with W ( r ) =  woO(ro-  r), that was assumed in the present paper, a particle 
can penetrate into such sphere and, moreover, the probability of the reaction 
per unit time remains constant everywhere inside the reaction sphere. 
Evidently, these two situations are different. 
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In one- and two-dimensional media in the limit of extremely fast 
reactions our results [Eqs. (42) and (47), (48)] agree with the predictions of 
the theories based on the Kirkwood truncation scheme (see Refs. 9 and 11), 
thus validating such semiphenomenological approximation. 

The results [Eqs. (41) and (47), (48)] for the intermidiate and slow 
reactions in one or two dimensions might seem surprising. We have found 
that at sufficiently small concentrations, such that ~r 0 ,~ )2 in one dimension, 
any reaction (slow or intermediate) is effectively controlled by diffusion, 
owing to a contribution from very slow long-wave fluctuations of density. 
However, this result is partially supported by the conclusions reached in 
Ref. 4 where it was shown that in the final stage of reversible bimolecular 
reactions relaxation to thermal equilibrium is, in such situation, diffusionally 
controlled. In our case the reaction is assumed to be irreversible, but a 
steady state is still established with time owing to the uniform generation of 
particies. Note that K~r f was defined above as the rate of relaxation to such 
steady state. 

In conclusion we would like to emphasize that the diagrammatic 
technique, developed in the present paper, can have wide applications in 
other problems of physics, chemistry, or mathematical biology where the 
discrete Markovian processes with infinite numbers of states are involved. 
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